Insertion of Tetracysteine Motifs into Dopamine Transporter Extracellular Domains

نویسندگان

  • Deanna M. Navaroli
  • Haley E. Melikian
چکیده

The neuronal dopamine transporter (DAT) is a major determinant of extracellular dopamine (DA) levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC) activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC) to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly) dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3)H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane.

The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from r...

متن کامل

Evaluation of VNTR polymorphisms of dopamine transporter gene and the risk of bipolar disorder in Zahedan, southeast Iran

The exact role of dopamine transporter gene (DAT1) in the pathogenesis of bipolar disorder type 1 (BD) is not understood. In the present study, we aimed to evaluate the possible association between 30, 40 and 63 bp variable number tandem repeat (VNTR) polymorphisms of DAT1 gene and the risk of type 1 (BD) in a sample of Iranian population. This case-control study was performed on 152 BD patient...

متن کامل

Membrane topology of the NixA nickel transporter of Helicobacter pylori: two nickel transport-specific motifs within transmembrane helices II and III.

NixA, the high-affinity cytoplasmic membrane nickel transport protein of Helicobacter pylori, imports Ni(2+) into the cell for insertion into the active site of the urease metalloenzyme, which is required for gastric colonization. NixA fractionates with the cytoplasmic membrane, and protein cross-linking studies suggest that NixA functions as a monomer. A preliminary topological model of NixA w...

متن کامل

Dual incorporation of photoaffinity ligands on dopamine transporters implicates proximity of labeled domains.

We have recently developed novel high-affinity blockers for the dopamine transporter (DAT) by carrying out structure-activity studies of GBR 12909 molecule piperidine analogs. To investigate the molecular basis of binding of these compounds in comparison to known sites of action of GBR 12909, cocaine, and benztropine analogs, we developed a piperidine-based photoaffinity label [(125)I]4-[2-(dip...

متن کامل

Corelease of Dopamine and Serotonin from Striatal Dopamine Terminals

The striatum receives rich dopaminergic and more moderate serotonergic innervation. After vesicular release, dopamine and serotonin (5-hydroxytryptamine, 5-HT) signaling is controlled by transporter-mediated reuptake. Dopamine is taken up by dopamine transporters (DATs), which are expressed at the highest density in the striatum. Although DATs also display a low affinity for 5-HT, that neurotra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010